(2.76+3.72+1.5+3.37+9.25+4.08)/6
You asked:
MathBot Answer:
\[\frac{2.76 + 3.72 + 1.5 + 3.37 + 9.25 + 4.08}{6} = \frac{617}{150} = 4.11\overline{3}\]
\[\begin{aligned}\frac{2.76 + 3.72 + 1.5 + 3.37 + 9.25 + 4.08}{6}& = \left(2 + \frac{76}{100} + 3 + \frac{72}{100} + 1 + \frac{5}{10} + 3 + \frac{37}{100} + 9 + \frac{25}{100} + 4 + \frac{8}{100}\right) \cdot \frac{1}{6}\\& = \left(2 + \frac{19}{25} + 3 + \frac{72}{100} + 1 + \frac{5}{10} + 3 + \frac{37}{100} + 9 + \frac{25}{100} + 4 + \frac{8}{100}\right) \cdot \frac{1}{6}\\& = \left(2 + \frac{19}{25} + 3 + \frac{18}{25} + 1 + \frac{5}{10} + 3 + \frac{37}{100} + 9 + \frac{25}{100} + 4 + \frac{8}{100}\right) \cdot \frac{1}{6}\\& = \left(2 + \frac{19}{25} + 3 + \frac{18}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{25}{100} + 4 + \frac{8}{100}\right) \cdot \frac{1}{6}\\& = \left(2 + \frac{19}{25} + 3 + \frac{18}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{8}{100}\right) \cdot \frac{1}{6}\\& = \left(2 + \frac{19}{25} + 3 + \frac{18}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{69}{25} + 3 + \frac{18}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{144}{25} + \frac{18}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{162}{25} + 1 + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{187}{25} + \frac{1}{2} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{399}{50} + 3 + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{549}{50} + \frac{37}{100} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{227}{20} + 9 + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{407}{20} + \frac{1}{4} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{103}{5} + 4 + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \left(\frac{123}{5} + \frac{2}{25}\right) \cdot \frac{1}{6}\\& = \frac{617}{25} \cdot \frac{1}{6}\\& = \frac{617}{150}\end{aligned}\]