Simplify (8x ^ 3 - 1)/(4x ^ 3 + 2x ^ 2) / ((6x ^ 2 - 13x + 5)/(15x - 25)) * (2x ^ 4 + x ^ 3)/(15x ^ 3)

asked by guest
on Dec 07, 2024 at 11:07 pm



You asked:

Simplify the expression: 8x314x3+2x26x213x+515x25(2x4+x3)15x3\frac{\frac{\frac{8 {x}^{3} - 1}{4 {x}^{3} + 2 {x}^{2}}}{\frac{6 {x}^{2} - 13 x + 5}{15 x - 25}} \left(2 {x}^{4} + {x}^{3}\right)}{15 {x}^{3}}

MathBot Answer:

Simplified:

8x314x3+2x26x213x+515x25(2x4+x3)15x3=4x2+2x+16x2 \frac{\frac{\frac{8 {x}^{3} - 1}{4 {x}^{3} + 2 {x}^{2}}}{\frac{6 {x}^{2} - 13 x + 5}{15 x - 25}} \left(2 {x}^{4} + {x}^{3}\right)}{15 {x}^{3}} = \frac{4 x^{2} + 2 x + 1}{6 x^{2}}


(8x31)(2x4+x3)6x213x+515x25(4x3+2x2)15x3=(15x25)(8x31)(2x4+x3)15x3(6x213x+5)(4x3+2x2)=4x2+2x+16x2\begin{aligned}\frac{\left(8 x^{3} - 1\right) \left(2 x^{4} + x^{3}\right)}{\frac{6 x^{2} - 13 x + 5}{15 x - 25} \cdot \left(4 x^{3} + 2 x^{2}\right) 15 x^{3}}&=\frac{\left(15 x - 25\right) \left(8 x^{3} - 1\right) \left(2 x^{4} + x^{3}\right)}{15 x^{3} \cdot \left(6 x^{2} - 13 x + 5\right) \left(4 x^{3} + 2 x^{2}\right)}\\&=\frac{4 x^{2} + 2 x + 1}{6 x^{2}}\end{aligned}


Expanded:

8x314x3+2x26x213x+515x25(2x4+x3)15x3=16x4360x515x25600x415x2590x315x25+150x215x25+8x3360x515x25600x415x2590x315x25+150x215x252x360x515x25600x415x2590x315x25+150x215x251360x515x25600x415x2590x315x25+150x215x25 \frac{\frac{\frac{8 {x}^{3} - 1}{4 {x}^{3} + 2 {x}^{2}}}{\frac{6 {x}^{2} - 13 x + 5}{15 x - 25}} \left(2 {x}^{4} + {x}^{3}\right)}{15 {x}^{3}} = \frac{16 x^{4}}{\frac{360 x^{5}}{15 x - 25} - \frac{600 x^{4}}{15 x - 25} - \frac{90 x^{3}}{15 x - 25} + \frac{150 x^{2}}{15 x - 25}} + \frac{8 x^{3}}{\frac{360 x^{5}}{15 x - 25} - \frac{600 x^{4}}{15 x - 25} - \frac{90 x^{3}}{15 x - 25} + \frac{150 x^{2}}{15 x - 25}} - \frac{2 x}{\frac{360 x^{5}}{15 x - 25} - \frac{600 x^{4}}{15 x - 25} - \frac{90 x^{3}}{15 x - 25} + \frac{150 x^{2}}{15 x - 25}} - \frac{1}{\frac{360 x^{5}}{15 x - 25} - \frac{600 x^{4}}{15 x - 25} - \frac{90 x^{3}}{15 x - 25} + \frac{150 x^{2}}{15 x - 25}}


Factored:

8x314x3+2x26x213x+515x25(2x4+x3)15x3=4x2+2x+16x2 \frac{\frac{\frac{8 {x}^{3} - 1}{4 {x}^{3} + 2 {x}^{2}}}{\frac{6 {x}^{2} - 13 x + 5}{15 x - 25}} \left(2 {x}^{4} + {x}^{3}\right)}{15 {x}^{3}} = \frac{4 x^{2} + 2 x + 1}{6 x^{2}}