32.621-20.435

asked by guest
on Apr 01, 2025 at 10:51 am



You asked:

Evaluate the expression: 32.62120.43532.621 - 20.435

MathBot Answer:

32.62120.435=12.186=6093500 32.621 - 20.435=12.186=\frac{6093}{500}


32.65211111020.43512.186 \begin{aligned} \mathtt{3}\mathtt{2}&\mathtt{.}\overset{{\scriptscriptstyle \mathtt{5}}}{\cancel{\mathtt{6}}}\overset{{\scriptscriptstyle \mathtt{11}}}{\cancel{\mathtt{2}}}\overset{{\scriptscriptstyle \mathtt{11}}}{\cancel{\mathtt{1}}}\\ \mathtt{-\phantom{0}}\mathtt{2}\mathtt{0}&\mathtt{.}\mathtt{4}\mathtt{3}\mathtt{5}\\ \hline \mathtt{1}\mathtt{2}&\mathtt{.}\mathtt{1}\mathtt{8}\mathtt{6} \end{aligned}

Borrow 10210^{-2}, resulting in 11 in the 10210^{-2} place, and 1111 in the 10310^{-3} place.

66 is the digit in the 10310^{-3} place. 11×1035×103=6×10311 \times 10^{-3} - 5 \times 10^{-3} = 6 \times 10^{-3}.

Borrow 10110^{-1}, resulting in 55 in the 10110^{-1} place, and 1111 in the 10210^{-2} place.

88 is the digit in the 10210^{-2} place. 11×1023×102=8×10211 \times 10^{-2} - 3 \times 10^{-2} = 8 \times 10^{-2}.

11 is the digit in the 10110^{-1} place. 5×1014×101=1×1015 \times 10^{-1} - 4 \times 10^{-1} = 1 \times 10^{-1}.

22 is the digit in the 10010^{0} place. 2×1000×100=2×1002 \times 10^{0} - 0 \times 10^{0} = 2 \times 10^{0}.

11 is the digit in the 10110^{1} place. 3×1012×101=1×1013 \times 10^{1} - 2 \times 10^{1} = 1 \times 10^{1}.