2500(1.25)^x=6000(0.3)^x

asked by guest
on Jan 22, 2025 at 6:00 am



You asked:

Solve the equation \(2500 \cdot {1.25}^{x} = 6000 \cdot {0.3}^{x}\) for the variable \(x\).

MathBot Answer:

The solution is: \[x = - \frac{- \log{\left(6000 \right)} + 2 \log{\left(50 \right)}}{- \log{\left(3 \right)} - 2 \log{\left(2 \right)} + \log{\left(5 \right)} + \log{\left(10 \right)}} \approx 0.61345295\]