(1+â(x^3 )) ă(xă^(-3)-2âx )
You asked:
Evaluate the expression: \(\left(1 + \sqrt{{x}^{3}}\right) \left({x}^{-3} - 2 \sqrt[3]{x}\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(1 + \sqrt{{x}^{3}}\right) \left({x}^{-3} - 2 \sqrt[3]{x}\right) = \left(- 2 \sqrt[3]{x} + \frac{1}{x^{3}}\right) \left(\sqrt{x^{3}} + 1\right) \)
Expanded
\[\left(1 + \sqrt{{x}^{3}}\right) \left({x}^{-3} - 2 \sqrt[3]{x}\right) = - 2 \sqrt[3]{x} \sqrt{x^{3}} - 2 \sqrt[3]{x} + \frac{\sqrt{x^{3}}}{x^{3}} + \frac{1}{x^{3}}\]
Factored
\[\left(1 + \sqrt{{x}^{3}}\right) \left({x}^{-3} - 2 \sqrt[3]{x}\right) = - \frac{\left(2 x^{\frac{10}{3}} - 1\right) \left(\sqrt{x^{3}} + 1\right)}{x^{3}}\]