0.04 * 1.4 * 10^-6

asked by guest
on Jan 26, 2025 at 11:56 pm



You asked:

Evaluate the expression: \(0.04 \cdot 1.4 \cdot {10}^{-6}\)

MathBot Answer:

\[0.04 \cdot 1.4 \cdot {10}^{-6} = \frac{7}{125000000} = 0.000000056\]


\[\begin{aligned}0.04 \cdot 1.4 \cdot {10}^{-6}& = \frac{4}{100} \cdot \left(1 + \frac{4}{10}\right) \cdot \frac{1}{10^{6}}\\& = \frac{4}{100} \cdot \left(1 + \frac{2}{5}\right) \cdot \frac{1}{10^{6}}\\& = \frac{4}{100} \cdot \frac{7}{5} \cdot \frac{1}{10^{6}}\\& = \frac{4}{100} \cdot \frac{7}{5} \cdot \frac{1}{1000000}\\& = \frac{1}{25} \cdot \frac{7}{5} \cdot \frac{1}{1000000}\\& = \frac{7}{125} \cdot \frac{1}{1000000}\\& = \frac{7}{125000000}\end{aligned}\]