-1/0.000855ln[-ln(0.3046)]=

asked by guest
on Nov 26, 2024 at 12:37 pm



You asked:

Evaluate the expression: \(\frac{-1}{0.000855 \ln\left( -\ln\left( 0.3046 \right) \right)}\)

MathBot Answer:

\[\frac{-1}{0.000855 \ln\left( -\ln\left( 0.3046 \right) \right)} = - \frac{200000}{171 \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}} \approx -6764.2662063038754937690625486966754\]


\[\begin{aligned}\frac{-1}{0.000855 \ln\left( -\ln\left( 0.3046 \right) \right)}& = - \frac{1}{\frac{855}{1000000} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}}\\& = - \frac{1}{\frac{855}{1000000} \cdot \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}}\\& = - \frac{1}{\frac{171}{200000} \cdot \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}}\\& = - \frac{200000}{171} \cdot \frac{1}{\log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}}\end{aligned}\]