0.1*pi/ln2
You asked:
Evaluate the expression: \(\frac{0.1 \cdot \pi}{\ln\left( 2 \right)}\)
MathBot Answer:
\[\frac{0.1 \cdot \pi}{\ln\left( 2 \right)} = \frac{\pi}{10 \log{\left(2 \right)}} \approx 0.45323601418271938096276829457167\]
\[\begin{aligned}\frac{0.1 \cdot \pi}{\ln\left( 2 \right)}& = \frac{1}{10} \cdot \pi \cdot \frac{1}{\log{\left(2 \right)}}\\& = \frac{\pi}{10} \cdot \frac{1}{\log{\left(2 \right)}}\end{aligned}\]