0,1*pi/ln2
MathBot Answer:
The sum of \(0\) and \(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\) is:
\[\begin{aligned}&=\left(0\right) + \left(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\right) \\\\ &= 1 \pi \frac{1}{\log{\left(2 \right)}} \\\\ &= \frac{\pi}{\log{\left(2 \right)}} \\\\\end{aligned}\]
The difference of \(0\) and \(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\) is:
\[\begin{aligned}&=\left(0\right) - \left(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\right) \\\\ &= - \frac{\pi}{\log{\left(2 \right)}} \\\\\end{aligned}\]
The product of \(0\) and \(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\) is:
\[\begin{aligned}&=\left(0\right) \cdot \left(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\right) \\\\ &= 0 \\\\\end{aligned}\]
The quotient of \(0\) and \(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\) is:
\[\begin{aligned}&= \frac{\left(0\right)}{\left(\frac{1 \cdot \pi}{\ln\left( 2 \right)}\right)} \\\\ &= 0 \\\\\end{aligned}\]