solve the expression 2log 5-(1/2)log 16+2log 40

asked by guest
on Apr 10, 2025 at 2:07 am



You asked:

Evaluate the expression: 2log(5)12log(16)+2log(40)2 \log\left( 5 \right) - \frac{1}{2} \log\left( 16 \right) + 2 \log\left( 40 \right)

MathBot Answer:

2log(5)12log(16)+2log(40)=log(16)2+2log(5)+2log(40)9.210340371976182736071965818737462 \log\left( 5 \right) - \frac{1}{2} \log\left( 16 \right) + 2 \log\left( 40 \right) = - \frac{\log{\left(16 \right)}}{2} + 2 \log{\left(5 \right)} + 2 \log{\left(40 \right)} \approx 9.21034037197618273607196581873746


2log(5)12log(16)+2log(40)=2log(5)12log(16)+2log(40)=(2log(5)12log(16))+2log(40)=2log(5)+2log(40)12log(16)\begin{aligned}2 \log\left( 5 \right) - \frac{1}{2} \log\left( 16 \right) + 2 \log\left( 40 \right)&=2 \cdot \log{\left(5 \right)} - \frac{1}{2} \cdot \log{\left(16 \right)} + 2 \cdot \log{\left(40 \right)}\\&=\left(2 \cdot \log{\left(5 \right)} - \frac{1}{2} \cdot \log{\left(16 \right)}\right) + 2 \cdot \log{\left(40 \right)}\\&=2 \cdot \log{\left(5 \right)} + 2 \cdot \log{\left(40 \right)} - \frac{1}{2} \cdot \log{\left(16 \right)}\end{aligned}