simplify the expression

(t^2+1)(t^4+1)(t^4-t^2+1)(t^4+t^3+t^2-t+1)(t^4+t^3+t^2+t+1)

asked by guest
on Jan 18, 2025 at 2:17 am



You asked:

Simplify the expression: \(\left({t}^{2} + 1\right) \left({t}^{4} + 1\right) \left({t}^{4} - {t}^{2} + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} - t + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} + t + 1\right)\)

MathBot Answer:


Expanded:

\[ \left({t}^{2} + 1\right) \left({t}^{4} + 1\right) \left({t}^{4} - {t}^{2} + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} - t + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} + t + 1\right) = t^{18} + 2 t^{17} + 3 t^{16} + 2 t^{15} + 4 t^{14} + 4 t^{13} + 5 t^{12} + 4 t^{11} + 7 t^{10} + 4 t^{9} + 5 t^{8} + 4 t^{7} + 5 t^{6} + 2 t^{5} + 4 t^{4} + 2 t^{3} + t^{2} + 1 \]


Factored:

\[ \left({t}^{2} + 1\right) \left({t}^{4} + 1\right) \left({t}^{4} - {t}^{2} + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} - t + 1\right) \left({t}^{4} + {t}^{3} + {t}^{2} + t + 1\right) = \left(t^{2} + 1\right) \left(t^{4} + 1\right) \left(t^{4} - t^{2} + 1\right) \left(t^{4} + t^{3} + t^{2} - t + 1\right) \left(t^{4} + t^{3} + t^{2} + t + 1\right) \]