find value of (2x+x*2^(1/2))^2 when x=4(2^(1/2) -1)
You asked:
Calculate the value of \({\left( 2 x + x \cdot {2}^{\frac{1}{2}} \right)}^{2}\) when \(x = 4 \cdot \left({2}^{\frac{1}{2}} - 1\right)\).
MathBot Answer:
\[{\left( 2 x + x \cdot {2}^{\frac{1}{2}} \right)}^{2} = {\left( 2 \cdot 4 \cdot \left({2}^{\frac{1}{2}} - 1\right) + 4 \cdot \left({2}^{\frac{1}{2}} - 1\right) \cdot {2}^{\frac{1}{2}} \right)}^{2} = \left(-8 + 4 \sqrt{2} \left(-1 + \sqrt{2}\right) + 8 \sqrt{2}\right)^{2}\]