find value of (2x+x*2^(1/2))^2 when x=4(2^(1/2) -1)

asked by guest
on Nov 17, 2024 at 8:13 am



You asked:

Calculate the value of (2x+x212)2{\left( 2 x + x \cdot {2}^{\frac{1}{2}} \right)}^{2} when x=4(2121)x = 4 \left({2}^{\frac{1}{2}} - 1\right).

MathBot Answer:

(2x+x212)2=(8+2(4+42)+82)2{\left( 2 x + x \cdot {2}^{\frac{1}{2}} \right)}^{2} = \left(-8 + \sqrt{2} \left(-4 + 4 \sqrt{2}\right) + 8 \sqrt{2}\right)^{2}


(212x+2x)2=(24(2121)+2124(2121))2=(24(1121)+4(1121)12)2=(24(21)+24(21))2=(2(424)+2(424))2=(2(424)+828)2=(828+842)2=(42)2=(8+2(4+42)+82)2\begin{aligned}\left(2^{\frac{1}{2}} x + 2 x\right)^{2}&=\left(2 \cdot 4 \left(2^{\frac{1}{2}} - 1\right) + 2^{\frac{1}{2}} \cdot 4 \left(2^{\frac{1}{2}} - 1\right)\right)^{2}\\&=\left(2 \cdot 4 \left(\frac{1}{\sqrt{\frac{1}{2}}} - 1\right) + \frac{4 \left(\frac{1}{\sqrt{\frac{1}{2}}} - 1\right)}{\sqrt{\frac{1}{2}}}\right)^{2}\\&=\left(2 \cdot 4 \left(\sqrt{2} - 1\right) + \sqrt{2} \cdot 4 \left(\sqrt{2} - 1\right)\right)^{2}\\&=\left(2 \left(4 \sqrt{2} - 4\right) + \sqrt{2} \left(4 \sqrt{2} - 4\right)\right)^{2}\\&=\left(\sqrt{2} \left(4 \sqrt{2} - 4\right) + 8 \sqrt{2} - 8\right)^{2}\\&=\left(8 \sqrt{2} - 8 + 8 - 4 \sqrt{2}\right)^{2}\\&=\left(4 \sqrt{2}\right)^{2}\\&=\left(-8 + \sqrt{2} \left(-4 + 4 \sqrt{2}\right) + 8 \sqrt{2}\right)^{2}\end{aligned}