1/a(a-b)+1/a(a+b)
You asked:
Evaluate the expression: \(\frac{1}{a \left(a - b\right)} + \frac{1}{a \left(a + b\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{1}{a \left(a - b\right)} + \frac{1}{a \left(a + b\right)} = \frac{1}{a \left(a + b\right)} + \frac{1}{a \left(a - b\right)} \)
Expanded
\[\frac{1}{a \left(a - b\right)} + \frac{1}{a \left(a + b\right)} = \frac{1}{a^{2} + a b} + \frac{1}{a^{2} - a b}\]
Factored
\[\frac{1}{a \left(a - b\right)} + \frac{1}{a \left(a + b\right)} = \frac{2}{\left(a - b\right) \left(a + b\right)}\]