g(x)=f^(2)[1+sin(0.6*f)]-83.5,at g(3)and g(12)

asked by guest
on Nov 19, 2024 at 9:45 am



You asked:

Given \( g\left( x \right) = {f}^{2} \cdot \left(1 + \sin\left( 0.6 f \right)\right) - 83.5 \), evaluate \( g\left( 3 \right) \), \( g\left( 12 \right) \).

MathBot Answer:

$$\begin{aligned}g\left( 3 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\\g\left( 12 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\end{aligned}$$