g(x)=f^(2)[1+sin(0.6*f)]-83.5,at g(3)and g(12)
You asked:
Given \( g\left( x \right) = {f}^{2} \cdot \left(1 + \sin\left( 0.6 f \right)\right) - 83.5 \), evaluate \( g\left( 3 \right) \), \( g\left( 12 \right) \).
MathBot Answer:
$$\begin{aligned}g\left( 3 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\\g\left( 12 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\end{aligned}$$