g(x)=f^(2)[1+sin(0.6*f)]-83.5,at g(3)and g(12)
asked by guest on Nov 19, 2024 at 9:45 am
MathBot Answer:
g(3)=f2sin(3f5)+f2−1672g(12)=f2sin(3f5)+f2−1672\begin{aligned}g\left( 3 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\\g\left( 12 \right)&=f^{2} \sin{\left(\frac{3 f}{5} \right)} + f^{2} - \frac{167}{2}\end{aligned}g(3)g(12)=f2sin(53f)+f2−2167=f2sin(53f)+f2−2167