Vx÷30 +5+Vx÷15+Vx-150-(1÷3 Vx)÷10=0
You asked:
Investigate the equation: \(\frac{V x}{30} + 5 + \frac{V x}{15} + V x - 150 - \frac{\frac{1}{3} \cdot V x}{10} = 0\).
MathBot Answer:
The graph of the equation \(\frac{V x}{30} + 5 + \frac{V x}{15} + V x - 150 - \frac{\frac{1}{3} \cdot V x}{10} = 0\) is a hyperbola.
The coordinates of its foci are: \(\left(- \frac{5 \sqrt{174}}{4}, - \frac{5 \sqrt{174}}{4}\right)\) and \(\left(\frac{5 \sqrt{174}}{4}, \frac{5 \sqrt{174}}{4}\right)\).
The coordinates of its vertices are: \(\left(- \frac{5 \sqrt{87}}{4}, - \frac{5 \sqrt{87}}{4}\right)\) and \(\left(\frac{5 \sqrt{87}}{4}, \frac{5 \sqrt{87}}{4}\right)\).
The asymptotes have equations: \(- 5 \sqrt{87} V = 0\) and \(- 5 \sqrt{87} x = 0\).