$-x^{3}$ (x+1)-x( $x^{3}$ -x)
You asked:
Evaluate the expression: \(-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right)\)
MathBot Answer:
Evaluated
\(\displaystyle -\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - x^{3} \left(x + 1\right) - x \left(x^{3} - x\right) \)
Expanded
\[-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - 2 x^{4} - x^{3} + x^{2}\]
Factored
\[-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - x^{2} \cdot \left(2 x - 1\right) \left(x + 1\right)\]