$-x^{3}$ (x+1)-x( $x^{3}$ -x)

asked by guest
on Nov 18, 2024 at 5:30 am



You asked:

Evaluate the expression: \(-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right)\)

MathBot Answer:

Evaluated



\(\displaystyle -\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - x^{3} \left(x + 1\right) - x \left(x^{3} - x\right) \)


Expanded

\[-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - 2 x^{4} - x^{3} + x^{2}\]


Factored

\[-\left( {x}^{3} \cdot \left(x + 1\right) \right) - x \cdot \left({x}^{3} - x\right) = - x^{2} \cdot \left(2 x - 1\right) \left(x + 1\right)\]