\[ \sqrt[5]{3^5 (x-1)^6} = (3^5 (x-1)6){1/5} \]
You asked:
Solve the equation \(\sqrt[5]{{3}^{5} {\left( x - 1 \right)}^{6}} = {3}^{5} \cdot \left(x - 1\right) \cdot 6 \cdot \frac{1}{5}\) for the variable \(x\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}x &= 1\\x &= \frac{27113235505301}{3125} = 8676235361.69632\end{aligned}\]