\(\frac{k}{(3k+1)}+\frac{1}{(3k+1)(3k+4)}\)
You asked:
Evaluate the expression: \(\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \left(3 k + 4\right)} \)
Expanded
\[\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k}{3 k + 1} + \frac{1}{9 k^{2} + 15 k + 4}\]
Factored
\[\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k + 1}{3 k + 4}\]