\(\frac{k}{(3k+1)}+\frac{1}{(3k+1)(3k+4)}\)

asked by guest
on Nov 26, 2024 at 4:04 pm



You asked:

Evaluate the expression: \(\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \left(3 k + 4\right)} \)


Expanded

\[\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k}{3 k + 1} + \frac{1}{9 k^{2} + 15 k + 4}\]


Factored

\[\frac{k}{3 k + 1} + \frac{1}{\left(3 k + 1\right) \cdot \left(3 k + 4\right)} = \frac{k + 1}{3 k + 4}\]