z^5=i

asked by guest
on Mar 30, 2025 at 10:18 am



You asked:

Investigate the equation: z5=i{z}^{5} = i.

MathBot Answer:

The 5 solutions to the equation are: z=iz=5858+i(5414)0.587785250.80901699iz=58+58+i(14+54)0.95105652+0.30901699iz=5858+i(5414)0.587785250.80901699iz=58+58+i(14+54)0.95105652+0.30901699i\begin{aligned}z &= i\\z &= \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right) \approx 0.58778525 -0.80901699 i\\z &= \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) \approx 0.95105652 + 0.30901699 i\\z &= - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right) \approx -0.58778525 -0.80901699 i\\z &= - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) \approx -0.95105652 + 0.30901699 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.