((x^2 - 4)/(x - 1) - 2*x*ln(x - 1) + 2*x)/((x^2 - 4)^2) = 0
You asked:
Solve the equation \(\frac{\frac{{x}^{2} - 4}{x - 1} - 2 x \cdot \ln\left( x - 1 \right) + 2 x}{{\left( {x}^{2} - 4 \right)}^{2}} = 0\) for the variable \(x\).
MathBot Answer:
The complex solutions are: \[\left\{x\; \middle|\; x \in \mathbb{R} \wedge 2 x^{2} \log{\left(x - 1 \right)} - 3 x^{2} - 2 x \log{\left(x - 1 \right)} + 2 x + 4 = 0 \right\} \setminus \left\{-2, 1, 2\right\}\]