(2p +q) (3p² - 4pq + q²)
You asked:
Evaluate the expression: \(\left(2 p + q\right) \cdot \left(3 {p}^{2} - 4 p q + {q}^{2}\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(2 p + q\right) \cdot \left(3 {p}^{2} - 4 p q + {q}^{2}\right) = \left(2 p + q\right) \left(3 p^{2} - 4 p q + q^{2}\right) \)
Expanded
\[\left(2 p + q\right) \cdot \left(3 {p}^{2} - 4 p q + {q}^{2}\right) = 6 p^{3} - 5 p^{2} q - 2 q^{2} p + q^{3}\]
Factored
\[\left(2 p + q\right) \cdot \left(3 {p}^{2} - 4 p q + {q}^{2}\right) = \left(2 p + q\right) \left(3 p - q\right) \left(p - q\right)\]