6\sqrt{6} (3 8\sqrt{8} - 10 54\sqrt{54} )

asked by guest
on Jan 15, 2025 at 9:49 am



You asked:

Evaluate the expression: 6(381054)\sqrt{6} \left(3 \sqrt{8} - 10 \sqrt{54}\right)

MathBot Answer:

6(381054)=6(306+62)159.21539030917347247767064390192953\sqrt{6} \left(3 \sqrt{8} - 10 \sqrt{54}\right) = \sqrt{6} \left(- 30 \sqrt{6} + 6 \sqrt{2}\right) \approx -159.21539030917347247767064390192953


6(381054)=6(381054)=6(3221054)=6(621054)=6(621036)=6(62306)=6(306+62)\begin{aligned}\sqrt{6} \left(3 \sqrt{8} - 10 \sqrt{54}\right)&=\sqrt{6} \cdot \left(3 \cdot \sqrt{8} - 10 \cdot \sqrt{54}\right)\\&=\sqrt{6} \cdot \left(3 \cdot 2 \cdot \sqrt{2} - 10 \cdot \sqrt{54}\right)\\&=\sqrt{6} \cdot \left(6 \cdot \sqrt{2} - 10 \cdot \sqrt{54}\right)\\&=\sqrt{6} \cdot \left(6 \cdot \sqrt{2} - 10 \cdot 3 \cdot \sqrt{6}\right)\\&=\sqrt{6} \cdot \left(6 \cdot \sqrt{2} - 30 \cdot \sqrt{6}\right)\\&=\sqrt{6} \cdot \left(-30 \cdot \sqrt{6} + 6 \cdot \sqrt{2}\right)\end{aligned}