f(x-2)= x^3 then f(x) =
You asked:
Given \(f\left( x - 2 \right) = {x}^{3}\) evaluate the expression \(f\left( x \right)\).
MathBot Answer:
\(f{\left(x \right)} \in \left\{f{\left(- \frac{f}{\sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}} - \frac{\sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}}{3} \right)}, f{\left(- \frac{f}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}} - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}}{3} \right)}, f{\left(- \frac{f}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}} - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{27 f + \frac{\sqrt{- 108 f^{3} + 2916 f^{2}}}{2}}}{3} \right)}\right\}\)