The Maclaurin series for f left parenthesis x right parenthesis equals fraction numerator 1 over denominator 1 minus x squared end fraction is
Question 1Select one:
bold 1 bold minus bold italic x bold plus bold x to the power of bold 2 bold minus bold x to the power of bold 3 bold plus bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
bold italic x bold plus bold italic x to the power of bold 2 bold plus bold x to the power of bold 4 bold plus bold x to the power of 6 bold plus bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
bold 1 bold plus bold italic x bold plus bold x to the power of bold 2 bold plus bold x to the power of bold 3 bold plus bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
bold 1 bold minus bold italic x to the power of bold 2 bold plus bold x to the power of bold 4 bold minus bold x to the power of 6 bold plus bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
bold 1 bold plus bold italic x to the power of bold 2 bold plus bold x to the power of bold 4 bold plus bold x to the power of 6 bold plus bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold.
Mathbot Says...
I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.