z4z^{4} = 1 - i

asked by guest
on Apr 06, 2025 at 2:20 pm



You asked:

Investigate the equation: z4=1i{z}^{4} = 1 - i.

MathBot Answer:

The 4 solutions to the equation are: z=28cos(7π16)+28isin(7π16)0.2127475+1.0695539iz=28cos(π16)+28isin(π16)1.0695539+0.2127475iz=28cos(π16)28isin(π16)1.06955390.2127475iz=28cos(7π16)28isin(7π16)0.21274751.0695539i\begin{aligned}z &= \sqrt[8]{2} \cos{\left(\frac{7 \pi}{16} \right)} + \sqrt[8]{2} i \sin{\left(\frac{7 \pi}{16} \right)} \approx 0.2127475 + 1.0695539 i\\z &= - \sqrt[8]{2} \cos{\left(\frac{\pi}{16} \right)} + \sqrt[8]{2} i \sin{\left(\frac{\pi}{16} \right)} \approx -1.0695539 + 0.2127475 i\\z &= \sqrt[8]{2} \cos{\left(\frac{\pi}{16} \right)} - \sqrt[8]{2} i \sin{\left(\frac{\pi}{16} \right)} \approx 1.0695539 -0.2127475 i\\z &= - \sqrt[8]{2} \cos{\left(\frac{7 \pi}{16} \right)} - \sqrt[8]{2} i \sin{\left(\frac{7 \pi}{16} \right)} \approx -0.2127475 -1.0695539 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.