log 4/log 3
asked by guest on Apr 04, 2025 at 1:02 pm
You asked:
MathBot Answer:
log(4)log(3)=log(4)log(3)≈1.26185950714291487419905422868552\frac{\log\left( 4 \right)}{\log\left( 3 \right)} = \frac{\log{\left(4 \right)}}{\log{\left(3 \right)}} \approx 1.26185950714291487419905422868552log(3)log(4)=log(3)log(4)≈1.26185950714291487419905422868552
log(4)log(3)=log(4)⋅1log(3)=1log(3)⋅log(4)\begin{aligned}\frac{\log\left( 4 \right)}{\log\left( 3 \right)}&=\log{\left(4 \right)} \cdot \frac{1}{\log{\left(3 \right)}}\\&=\frac{1}{\log{\left(3 \right)}} \cdot \log{\left(4 \right)}\end{aligned}log(3)log(4)=log(4)⋅log(3)1=log(3)1⋅log(4)