Solve this system equation:

2x^2 y^2 - 9y - 108 = 0

x + y + 3 = 0

asked by guest
on Jan 25, 2025 at 3:54 am



You asked:

Solve the system of equations:\[\begin{aligned}2 {x}^{2} {y}^{2} - 9 y - 108 &= 0\\x + y + 3 &= 0\end{aligned}\]

MathBot Answer:

The system of equations has \(4\) solutions.

\[x = - \frac{3}{2} - \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} + \frac{\sqrt{- 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}}{2}, y = - \frac{\sqrt{- 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}}{2} - \frac{3}{2} + \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2}\]\[x = - \frac{3}{2} + \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} - \frac{\sqrt{- \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}} - 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}{2}, y = - \frac{3}{2} - \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} + \frac{\sqrt{- \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}} - 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}{2}\]\[x = - \frac{3}{2} + \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} + \frac{\sqrt{- \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}} - 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}{2}, y = - \frac{3}{2} - \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} - \frac{\sqrt{- \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}} - 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}{2}\]\[x = - \frac{\sqrt{- 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}}{2} - \frac{3}{2} - \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2}, y = - \frac{3}{2} + \frac{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}{2} + \frac{\sqrt{- 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}} + 6 + \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + \frac{9}{\sqrt{- \frac{27}{\sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}} + 3 + 2 \sqrt[3]{- \frac{1971}{64} + \frac{27 \sqrt{19153}}{64}}}}}}{2}\]