\sqrt[3]{\sqrt[4]{\left(5-3\right)^2-2^8\cdot \:2^{-6}}}+\frac{1}{2}\cdot \:\sqrt{3}\cdot \:\sqrt{27}-\sqrt[3]{8}

asked by guest
on Nov 25, 2024 at 6:25 pm



You asked:

Evaluate the expression: \(\sqrt[3]{\sqrt[4]{{\left( 5 - 3 \right)}^{2} - {2}^{8} {2}^{-6}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\)

MathBot Answer:

\[\sqrt[3]{\sqrt[4]{{\left( 5 - 3 \right)}^{2} - {2}^{8} {2}^{-6}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8} = \frac{5}{2} = 2.5\]


\[\begin{aligned}\sqrt[3]{\sqrt[4]{{\left( 5 - 3 \right)}^{2} - {2}^{8} {2}^{-6}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}& = \sqrt[3]{\sqrt[4]{\left(5 - 3\right)^{2} - 2^{8} \cdot \frac{1}{2^{6}}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{2^{2} - 2^{8} \cdot \frac{1}{2^{6}}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{4 - 2^{8} \cdot \frac{1}{2^{6}}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{4 - 256 \cdot \frac{1}{2^{6}}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{4 - \frac{256}{64}}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{4 - 4}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{\sqrt[4]{0}} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = \sqrt[3]{0} + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = 0 + \frac{1}{2} \cdot \sqrt{3} \cdot \sqrt{27} - \sqrt[3]{8}\\& = 0 + \frac{1}{2} \cdot \sqrt{3} \cdot 3 \cdot \sqrt{3} - \sqrt[3]{8}\\& = 0 + \frac{9}{2} - \sqrt[3]{8}\\& = 0 + \frac{9}{2} - 2\\& = \frac{9}{2} - 2\\& = \frac{5}{2}\end{aligned}\]