9034.92=300cos(40t)

asked by guest
on Nov 23, 2024 at 7:17 pm



You asked:

Solve the equation \(9034.92 = 300 \cdot \cos\left( 40 t \right)\) for the variable \(t\).

MathBot Answer:

There are no real solutions.


The complex solutions are: \[\begin{aligned}t &= \left\{- \frac{i \log{\left(\frac{75291}{2500} - \frac{\sqrt{5662484681}}{2500} \right)}}{40} + \frac{\pi n}{20}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.15707963 n + 0.10244853 i\; \middle|\; n \in \mathbb{Z}\right\}\\t &= \left\{- \frac{i \log{\left(\frac{75291}{2500} + \frac{\sqrt{5662484681}}{2500} \right)}}{40} + \frac{\pi n}{20}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.15707963 n - 0.10244853 i\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).