20!3!/(22-2)!2!

asked by guest
on Oct 29, 2024 at 10:24 pm



You asked:

Evaluate the expression: 20!3!(222)!2!\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!}

MathBot Answer:

20!3!(222)!2!=3\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!} = 3


20!3!(222)!2!=20!3!1(222)!2!=24329020081766400003!1(222)!2!=243290200817664000061(222)!2!=24329020081766400006120!2!=24329020081766400006124329020081766400002!=24329020081766400006124329020081766400002=243290200817664000064865804016353280000=2432902008176640000810967336058880000=3\begin{aligned}\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!}&=20! \cdot 3! \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\&=2432902008176640000 \cdot 3! \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\&=2432902008176640000 \cdot 6 \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\&=2432902008176640000 \cdot 6 \cdot \frac{1}{20! \cdot 2!}\\&=2432902008176640000 \cdot 6 \cdot \frac{1}{2432902008176640000 \cdot 2!}\\&=2432902008176640000 \cdot 6 \cdot \frac{1}{2432902008176640000 \cdot 2}\\&=2432902008176640000 \cdot \frac{6}{4865804016353280000}\\&=\frac{2432902008176640000}{810967336058880000}\\&=3\end{aligned}