20!3!/(22-2)!2!
You asked:
Evaluate the expression: \(\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!}\)
MathBot Answer:
\[\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!} = 3\]
\[\begin{aligned}\frac{20! \cdot 3!}{\left( 22 - 2 \right)! \cdot 2!}& = 20! \cdot 3! \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\& = 2432902008176640000 \cdot 3! \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\& = 2432902008176640000 \cdot 6 \cdot \frac{1}{\left(22 - 2\right)! \cdot 2!}\\& = 2432902008176640000 \cdot 6 \cdot \frac{1}{20! \cdot 2!}\\& = 2432902008176640000 \cdot 6 \cdot \frac{1}{2432902008176640000 \cdot 2!}\\& = 2432902008176640000 \cdot 6 \cdot \frac{1}{2432902008176640000 \cdot 2}\\& = 2432902008176640000 \cdot \frac{6}{4865804016353280000}\\& = \frac{2432902008176640000}{810967336058880000}\\& = 3\end{aligned}\]