cosx(10cosx + 18)=-8

asked by guest
on Nov 25, 2024 at 10:26 am



You asked:

Solve the equation \(\cos\left( x \right) \cdot \left(10 \cdot \cos\left( x \right) + 18\right) = -8\) for the variable \(x\).

MathBot Answer:

The real solutions are: \[\begin{aligned}x &= \left\{\pi \left(1 + 2 n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.1415927\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi + 2 \pi n + \arctan{\left(\frac{3}{4} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.7850938\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi - \arctan{\left(\frac{3}{4} \right)} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 2.4980915\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]