(2+m)(2+m)(2+m)(2+m)(2+m)
You asked:
Evaluate the expression: \(\left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) = \left(m + 2\right)^{5} \)
Expanded
\[\left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) \cdot \left(2 + m\right) = m^{5} + 10 m^{4} + 40 m^{3} + 80 m^{2} + 80 m + 32\]