(7x+1)(4x-2)-(5x+2)(8x+1)
You asked:
Evaluate the expression: \(\left(7 x + 1\right) \cdot \left(4 x - 2\right) - \left(5 x + 2\right) \cdot \left(8 x + 1\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(7 x + 1\right) \cdot \left(4 x - 2\right) - \left(5 x + 2\right) \cdot \left(8 x + 1\right) = \left(4 x - 2\right) \left(7 x + 1\right) - \left(5 x + 2\right) \left(8 x + 1\right) \)
Expanded
\[\left(7 x + 1\right) \cdot \left(4 x - 2\right) - \left(5 x + 2\right) \cdot \left(8 x + 1\right) = - 12 x^{2} - 31 x - 4\]
Factored
\[\left(7 x + 1\right) \cdot \left(4 x - 2\right) - \left(5 x + 2\right) \cdot \left(8 x + 1\right) = - 12 x^{2} - 31 x - 4\]