x⁻² ÷ (x² ÷ x⁻⁶ • 4x²) = 33

asked by guest
on Apr 07, 2025 at 12:32 am



You asked:

Solve the equation x2x2x64x2=33\frac{{x}^{-2}}{\frac{{x}^{2}}{{x}^{-6}} \cdot 4 {x}^{2}} = 33 for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=256331112cos(πk6)66+256331112sin(πk6)66ix = \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}} \cos{\left(\frac{\pi k}{6} \right)}}{66} + \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}} \sin{\left(\frac{\pi k}{6} \right)}}{66} i where kk is an integer in 0k<120 \le k < 12.

There are 22 real solutions.

There are 1010 solutions with nonzero imaginary part.


Real solutions: x=256331112660.66571065x=256331112660.66571065\begin{aligned}x &= \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{66} \\&\approx 0.66571065\\x &= - \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{66} \\&\approx -0.66571065\end{aligned}


Solutions with nonzero imaginary part (88 of 1010 displayed): x=111112256351244+256331112i1320.57652234+0.33285533ix=256331112132+1111122563512i440.33285533+0.57652234ix=25633111266i0.66571065ix=256331112132+1111122563512i440.33285533+0.57652234ix=111112256351244+256331112i1320.57652234+0.33285533ix=111112256351244256331112i1320.576522340.33285533ix=2563311121321111122563512i440.332855330.57652234ix=25633111266i0.66571065i\begin{aligned}x &= \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}}}{44} + \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}} i}{132} \\&\approx 0.57652234 + 0.33285533 i\\x &= \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{132} + \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}} i}{44} \\&\approx 0.33285533 + 0.57652234 i\\x &= \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{66} i \\&\approx 0.66571065 i\\x &= - \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{132} + \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}} i}{44} \\&\approx -0.33285533 + 0.57652234 i\\x &= - \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}}}{44} + \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}} i}{132} \\&\approx -0.57652234 + 0.33285533 i\\x &= - \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}}}{44} - \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}} i}{132} \\&\approx -0.57652234 -0.33285533 i\\x &= - \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{132} - \frac{11^{\frac{11}{12}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{5}{12}} i}{44} \\&\approx -0.33285533 -0.57652234 i\\x &= - \frac{2^{\frac{5}{6}} \cdot 33^{\frac{11}{12}}}{66} i \\&\approx -0.66571065 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.