=[1/(1-2.257)][ln (0.236/0.0783)+ 2.257ln((1-0.236)/(1-0.0783))]

asked by guest
on Mar 31, 2025 at 1:51 pm



You asked:

Evaluate the expression: 112.257(ln(0.2360.0783)+2.257ln(10.23610.0783))\frac{1}{1 - 2.257} \left(\ln\left( \frac{0.236}{0.0783} \right) + 2.257 \ln\left( \frac{1 - 0.236}{1 - 0.0783} \right)\right)

MathBot Answer:

112.257(ln(0.2360.0783)+2.257ln(10.23610.0783))=1000log(2360783)12572257log(76409217)12570.54077456952390638963504929752404\frac{1}{1 - 2.257} \left(\ln\left( \frac{0.236}{0.0783} \right) + 2.257 \ln\left( \frac{1 - 0.236}{1 - 0.0783} \right)\right) = - \frac{1000 \log{\left(\frac{2360}{783} \right)}}{1257} - \frac{2257 \log{\left(\frac{7640}{9217} \right)}}{1257} \approx -0.54077456952390638963504929752404


112.257(ln(0.2360.0783)+2.257ln(10.23610.0783))=11(2+2571000)(log(2361000178310000)+(2+2571000)log((12361000)1178310000))=1122571000(log(2361000178310000)+(2+2571000)log((12361000)1178310000))=112571000(log(2361000178310000)+(2+2571000)log((12361000)1178310000))=10001257(log(2361000178310000)+(2+2571000)log((12361000)1178310000))=10001257(log(23610783)+(2+2571000)log((12361000)1178310000))=10001257(log(2360783)+(2+2571000)log((12361000)1178310000))=10001257(log(2360783)+22571000log((12361000)1178310000))=10001257(log(2360783)+22571000log((159250)1178310000))=10001257(log(2360783)+22571000log(1912501178310000))=10001257(log(2360783)+22571000log(1912501921710000))=10001257(log(2360783)+22571000log(76409217))=10001257(22571000log(76409217)+log(2360783))=22571257log(76409217)10001257log(2360783)\begin{aligned}\frac{1}{1 - 2.257} \left(\ln\left( \frac{0.236}{0.0783} \right) + 2.257 \ln\left( \frac{1 - 0.236}{1 - 0.0783} \right)\right)&=\frac{1}{1 - \left(2 + \frac{257}{1000}\right)} \cdot \left(\log{\left(\frac{236}{1000} \cdot \frac{1}{\frac{783}{10000}} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=\frac{1}{1 - \frac{2257}{1000}} \cdot \left(\log{\left(\frac{236}{1000} \cdot \frac{1}{\frac{783}{10000}} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=\frac{1}{- \frac{1257}{1000}} \cdot \left(\log{\left(\frac{236}{1000} \cdot \frac{1}{\frac{783}{10000}} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{236}{1000} \cdot \frac{1}{\frac{783}{10000}} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(236 \cdot \frac{10}{783} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \left(2 + \frac{257}{1000}\right) \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \frac{2257}{1000} \cdot \log{\left(\left(1 - \frac{236}{1000}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \frac{2257}{1000} \cdot \log{\left(\left(1 - \frac{59}{250}\right) \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \frac{2257}{1000} \cdot \log{\left(\frac{191}{250} \cdot \frac{1}{1 - \frac{783}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \frac{2257}{1000} \cdot \log{\left(\frac{191}{250} \cdot \frac{1}{\frac{9217}{10000}} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\log{\left(\frac{2360}{783} \right)} + \frac{2257}{1000} \cdot \log{\left(\frac{7640}{9217} \right)}\right)\\&=- \frac{1000}{1257} \cdot \left(\frac{2257}{1000} \cdot \log{\left(\frac{7640}{9217} \right)} + \log{\left(\frac{2360}{783} \right)}\right)\\&=- \frac{2257}{1257} \cdot \log{\left(\frac{7640}{9217} \right)} - \frac{1000}{1257} \cdot \log{\left(\frac{2360}{783} \right)}\end{aligned}