(h ^ { 6 } +3h ^ { 5 } +4h ^ { 4 } -3h ^ { 3 } -h ^ { 2 } +2) \div (h+3)

asked by guest
on Mar 26, 2025 at 9:02 pm



You asked:

Evaluate the expression: h6+3h5+4h43h3h2+2h+3\frac{{h}^{6} + 3 {h}^{5} + 4 {h}^{4} - 3 {h}^{3} - {h}^{2} + 2}{h + 3}

MathBot Answer:

Evaluated



h6+3h5+4h43h3h2+2h+3=h6+3h5+4h43h3h2+2h+3\displaystyle \frac{{h}^{6} + 3 {h}^{5} + 4 {h}^{4} - 3 {h}^{3} - {h}^{2} + 2}{h + 3} = \frac{h^{6} + 3 h^{5} + 4 h^{4} - 3 h^{3} - h^{2} + 2}{h + 3}


Expanded

h6+3h5+4h43h3h2+2h+3=h6h+3+3h5h+3+4h4h+33h3h+3h2h+3+2h+3\frac{{h}^{6} + 3 {h}^{5} + 4 {h}^{4} - 3 {h}^{3} - {h}^{2} + 2}{h + 3} = \frac{h^{6}}{h + 3} + \frac{3 h^{5}}{h + 3} + \frac{4 h^{4}}{h + 3} - \frac{3 h^{3}}{h + 3} - \frac{h^{2}}{h + 3} + \frac{2}{h + 3}