Find the derivative of y=(cosx+sinx )/(sinx-cosx )
You asked:
Find the derivative of the function \(y = \frac{\cos\left( x \right) + \sin\left( x \right)}{\sin\left( x \right) - \cos\left( x \right)}\) with respect to \(x\).
MathBot Answer:
\[\frac{d y}{d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}} + \frac{- \sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}}\]