Find the derivative of y=(cosx+sin⁡x )/(sin⁡x-cos⁡x )

asked by guest
on Jan 10, 2025 at 9:59 pm



You asked:

Find the derivative of the function y=cos(x)+sin(x)sin(x)cos(x)y = \frac{\cos\left( x \right) + \sin\left( x \right)}{\sin\left( x \right) - \cos\left( x \right)} with respect to xx.

MathBot Answer:

dydx=(sin(x)cos(x))(sin(x)+cos(x))(sin(x)cos(x))2+sin(x)+cos(x)sin(x)cos(x)\frac{d y}{d x} = \frac{\left(- \sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}} + \frac{- \sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} - \cos{\left(x \right)}}