find the value of sin[ π\pi /6-1/sin(- 3\sqrt{-3}/2)]

asked by guest
on Dec 04, 2024 at 12:56 am



You asked:

Evaluate the expression: sin(π61sin(32))\sin\left( \frac{\pi}{6} - \frac{1}{\sin\left( \frac{-\sqrt{-3}}{2} \right)} \right)

MathBot Answer:

sin(π61sin(32))=sin(π6isinh(32))\sin\left( \frac{\pi}{6} - \frac{1}{\sin\left( \frac{-\sqrt{-3}}{2} \right)} \right) = \sin{\left(\frac{\pi}{6} - \frac{i}{\sinh{\left(\frac{\sqrt{3}}{2} \right)}} \right)}


sin(π61sin(32))=sin(π61sin(312))=sin(π61sin(i312))=sin(π61sin(12i3))=sin(π61isinh(123))=sin(π6i1sinh(123))\begin{aligned}\sin\left( \frac{\pi}{6} - \frac{1}{\sin\left( \frac{-\sqrt{-3}}{2} \right)} \right)&=\sin{\left(\frac{\pi}{6} - \frac{1}{\sin{\left(- \cdot \sqrt{-3} \cdot \frac{1}{2} \right)}} \right)}\\&=\sin{\left(\frac{\pi}{6} - \frac{1}{\sin{\left(- \cdot i \cdot \sqrt{3} \cdot \frac{1}{2} \right)}} \right)}\\&=\sin{\left(\frac{\pi}{6} - \frac{1}{\sin{\left(- \frac{1}{2} \cdot i \cdot \sqrt{3} \right)}} \right)}\\&=\sin{\left(\frac{\pi}{6} - \frac{1}{- \cdot i \cdot \sinh{\left(\frac{1}{2} \cdot \sqrt{3} \right)}} \right)}\\&=\sin{\left(\frac{\pi}{6} - i \cdot \frac{1}{\sinh{\left(\frac{1}{2} \cdot \sqrt{3} \right)}} \right)}\end{aligned}