5.35+5.35+27.03+33.23+36.84+22.08+77.60+23.54+90.84+100+12.63+4.28+182.41+8.56+53.39+135.98+73.89+8.58+15.40+58.56+203.82+13=

asked by guest
on Nov 24, 2024 at 5:37 pm



You asked:

Evaluate the expression: \(5.35 + 5.35 + 27.03 + 33.23 + 36.84 + 22.08 + 77.60 + 23.54 + 90.84 + 100 + 12.63 + 4.28 + 182.41 + 8.56 + 53.39 + 135.98 + 73.89 + 8.58 + 15.40 + 58.56 + 203.82 + 13\)

MathBot Answer:

\[ 5.35 + 5.35 + 27.03 + 33.23 + 36.84 + 22.08 + 77.60 + 23.54 + 90.84 + 100 + 12.63 + 4.28 + 182.41 + 8.56 + 53.39 + 135.98 + 73.89 + 8.58 + 15.40 + 58.56 + 203.82 + 13 = \frac{29809}{25} = 1192.36 \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{5}{1}\), \(\frac{35}{100}\), \(\frac{5}{1}\), \(\frac{35}{100}\), \(\frac{27}{1}\), \(\frac{3}{100}\), \(\frac{33}{1}\), \(\frac{23}{100}\), \(\frac{36}{1}\), \(\frac{84}{100}\), \(\frac{22}{1}\), \(\frac{8}{100}\), \(\frac{77}{1}\), \(\frac{6}{10}\), \(\frac{23}{1}\), \(\frac{54}{100}\), \(\frac{90}{1}\), \(\frac{84}{100}\), \(\frac{100}{1}\), \(\frac{12}{1}\), \(\frac{63}{100}\), \(\frac{4}{1}\), \(\frac{28}{100}\), \(\frac{182}{1}\), \(\frac{41}{100}\), \(\frac{8}{1}\), \(\frac{56}{100}\), \(\frac{53}{1}\), \(\frac{39}{100}\), \(\frac{135}{1}\), \(\frac{98}{100}\), \(\frac{73}{1}\), \(\frac{89}{100}\), \(\frac{8}{1}\), \(\frac{58}{100}\), \(\frac{15}{1}\), \(\frac{4}{10}\), \(\frac{58}{1}\), \(\frac{56}{100}\), \(\frac{203}{1}\), \(\frac{82}{100}\), and \(\frac{13}{1}\) is \(100\). \[ \begin{aligned} 5.35 + 5.35 + 27.03 + 33.23 + 36.84 + 22.08 + 77.60 + 23.54 + 90.84 + 100 + 12.63 + 4.28 + 182.41 + 8.56 + 53.39 + 135.98 + 73.89 + 8.58 + 15.40 + 58.56 + 203.82 + 13 &= \frac{5 \cdot 100}{1 \cdot 100} + \frac{35 \cdot 1}{100 \cdot 1} + \frac{5 \cdot 100}{1 \cdot 100} + \frac{35 \cdot 1}{100 \cdot 1} + \frac{27 \cdot 100}{1 \cdot 100} + \frac{3 \cdot 1}{100 \cdot 1} + \frac{33 \cdot 100}{1 \cdot 100} + \frac{23 \cdot 1}{100 \cdot 1} + \frac{36 \cdot 100}{1 \cdot 100} + \frac{84 \cdot 1}{100 \cdot 1} + \frac{22 \cdot 100}{1 \cdot 100} + \frac{8 \cdot 1}{100 \cdot 1} + \frac{77 \cdot 100}{1 \cdot 100} + \frac{6 \cdot 10}{10 \cdot 10} + \frac{23 \cdot 100}{1 \cdot 100} + \frac{54 \cdot 1}{100 \cdot 1} + \frac{90 \cdot 100}{1 \cdot 100} + \frac{84 \cdot 1}{100 \cdot 1} + \frac{100 \cdot 100}{1 \cdot 100} + \frac{12 \cdot 100}{1 \cdot 100} + \frac{63 \cdot 1}{100 \cdot 1} + \frac{4 \cdot 100}{1 \cdot 100} + \frac{28 \cdot 1}{100 \cdot 1} + \frac{182 \cdot 100}{1 \cdot 100} + \frac{41 \cdot 1}{100 \cdot 1} + \frac{8 \cdot 100}{1 \cdot 100} + \frac{56 \cdot 1}{100 \cdot 1} + \frac{53 \cdot 100}{1 \cdot 100} + \frac{39 \cdot 1}{100 \cdot 1} + \frac{135 \cdot 100}{1 \cdot 100} + \frac{98 \cdot 1}{100 \cdot 1} + \frac{73 \cdot 100}{1 \cdot 100} + \frac{89 \cdot 1}{100 \cdot 1} + \frac{8 \cdot 100}{1 \cdot 100} + \frac{58 \cdot 1}{100 \cdot 1} + \frac{15 \cdot 100}{1 \cdot 100} + \frac{4 \cdot 10}{10 \cdot 10} + \frac{58 \cdot 100}{1 \cdot 100} + \frac{56 \cdot 1}{100 \cdot 1} + \frac{203 \cdot 100}{1 \cdot 100} + \frac{82 \cdot 1}{100 \cdot 1} + \frac{13 \cdot 100}{1 \cdot 100} \\ &= \frac{500 + 35 + 500 + 35 + 2700 + 3 + 3300 + 23 + 3600 + 84 + 2200 + 8 + 7700 + 60 + 2300 + 54 + 9000 + 84 + 10000 + 1200 + 63 + 400 + 28 + 18200 + 41 + 800 + 56 + 5300 + 39 + 13500 + 98 + 7300 + 89 + 800 + 58 + 1500 + 40 + 5800 + 56 + 20300 + 82 + 1300}{100} \\ &= \frac{119236}{100} \\&= \frac{29809}{25} \end{aligned} \]