sec^(-1)(xsinx) find its derivative

asked by guest
on Nov 19, 2024 at 2:32 am



You asked:

Find the derivative of the function \(\operatorname{arcsec}\left( x \cdot \sin\left( x \right) \right)\) with respect to \(x\).

MathBot Answer:

\[\frac{d}{d x}\left[\operatorname{arcsec}\left( x \cdot \sin\left( x \right) \right)\right] = \frac{x \cos{\left(x \right)} + \sin{\left(x \right)}}{x^{2} \sqrt{1 - \frac{1}{x^{2} \sin^{2}{\left(x \right)}}} \sin^{2}{\left(x \right)}}\]