(-3)+ $\sqrt{3^2-4(1)(-10)/2}$
You asked:
Evaluate the expression: \(-3 + \sqrt{{3}^{2} - \frac{4 \cdot 1 \cdot -10}{2}}\)
MathBot Answer:
\[-3 + \sqrt{{3}^{2} - \frac{4 \cdot 1 \cdot -10}{2}} = -3 + \sqrt{29} \approx 2.38516480713450403125071049154033\]
\[\begin{aligned}-3 + \sqrt{{3}^{2} - \frac{4 \cdot 1 \cdot -10}{2}}& = -3 + \sqrt{3^{2} - 4 \cdot 1 \cdot \frac{-10}{2}}\\& = -3 + \sqrt{9 - 4 \cdot 1 \cdot \frac{-10}{2}}\\& = -3 + \sqrt{9 - 4 \cdot 1 \cdot -5}\\& = -3 + \sqrt{9 - 4 \cdot -5}\\& = -3 + \sqrt{9 - -20}\\& = -3 + \sqrt{9 + 20}\\& = -3 + \sqrt{29}\end{aligned}\]