$\frac{2a^2-ac-c^2}{a^2+ab-ac-bc}$
You asked:
Evaluate the expression: \(\frac{2 {a}^{2} - a c - {c}^{2}}{{a}^{2} + a b - a c - b c}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{2 {a}^{2} - a c - {c}^{2}}{{a}^{2} + a b - a c - b c} = \frac{2 a^{2} - a c - c^{2}}{a^{2} + a b - a c - b c} \)
Expanded
\[\frac{2 {a}^{2} - a c - {c}^{2}}{{a}^{2} + a b - a c - b c} = \frac{2 a^{2}}{a^{2} + a b - a c - b c} - \frac{a c}{a^{2} + a b - a c - b c} - \frac{c^{2}}{a^{2} + a b - a c - b c}\]
Factored
\[\frac{2 {a}^{2} - a c - {c}^{2}}{{a}^{2} + a b - a c - b c} = \frac{2 a + c}{a + b}\]