(7v^3 - 14v^2 - 7v + 22) ÷ (7v + 7)
You asked:
Evaluate the expression: \(\frac{7 {v}^{3} - 14 {v}^{2} - 7 v + 22}{7 v + 7}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{7 {v}^{3} - 14 {v}^{2} - 7 v + 22}{7 v + 7} = \frac{7 v^{3} - 14 v^{2} - 7 v + 22}{7 v + 7} \)
Expanded
\[\frac{7 {v}^{3} - 14 {v}^{2} - 7 v + 22}{7 v + 7} = \frac{7 v^{3}}{7 v + 7} - \frac{14 v^{2}}{7 v + 7} - \frac{7 v}{7 v + 7} + \frac{22}{7 v + 7}\]
Factored
\[\frac{7 {v}^{3} - 14 {v}^{2} - 7 v + 22}{7 v + 7} = \frac{7 v^{3} - 14 v^{2} - 7 v + 22}{7 \left(v + 1\right)}\]