43/4+43/4+43/6+43/6
You asked:
Evaluate the expression: \(\frac{43}{4} + \frac{43}{4} + \frac{43}{6} + \frac{43}{6}\)
MathBot Answer:
\[ \frac{43}{4} + \frac{43}{4} + \frac{43}{6} + \frac{43}{6} = \frac{215}{6} = 35.8\overline{3} \]
The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{43}{4}\), \(\frac{43}{4}\), \(\frac{43}{6}\), and \(\frac{43}{6}\) is \(12\). \[ \begin{aligned} \frac{43}{4} + \frac{43}{4} + \frac{43}{6} + \frac{43}{6} &= \frac{43 \cdot 3}{4 \cdot 3} + \frac{43 \cdot 3}{4 \cdot 3} + \frac{43 \cdot 2}{6 \cdot 2} + \frac{43 \cdot 2}{6 \cdot 2} \\ &= \frac{129 + 129 + 86 + 86}{12} \\ &= \frac{430}{12} \\&= \frac{215}{6} \end{aligned} \]