30*sen[100π(t-(7/36))]=15
You asked:
Solve the equation \(30 \cdot \sin\left( 100 \cdot \pi \cdot \left(t - \frac{7}{36}\right) \right) = 15\) for the variable \(t\).
MathBot Answer:
The principal value in \(\frac{341}{1800} \le t \le \frac{359}{1800}\) is \(t \approx 0.19611111\)
The real solutions are: \[\begin{aligned}t &= \left\{\frac{29}{1800} + \frac{n}{50}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.02 n + 0.016111111\; \middle|\; n \in \mathbb{Z}\right\}\\t &= \left\{\frac{1}{360} + \frac{n}{50}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.02 n + 0.0027777778\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]