(x-1)(x+2)^2-(x-1)^2(x+2)

asked by guest
on Jan 12, 2025 at 6:18 pm



You asked:

Evaluate the expression: (x1)(x+2)2(x1)2(x+2)\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right)

MathBot Answer:

Evaluated



(x1)(x+2)2(x1)2(x+2)=(x1)2(x+2)+(x1)(x+2)2\displaystyle \left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = - \left(x - 1\right)^{2} \left(x + 2\right) + \left(x - 1\right) \left(x + 2\right)^{2}


Expanded

(x1)(x+2)2(x1)2(x+2)=3x2+3x6\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = 3 x^{2} + 3 x - 6


Factored

(x1)(x+2)2(x1)2(x+2)=3(x1)(x+2)\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = 3 \left(x - 1\right) \left(x + 2\right)