(x-1)(x+2)^2-(x-1)^2(x+2)
You asked:
Evaluate the expression: \(\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = - \left(x - 1\right)^{2} \left(x + 2\right) + \left(x - 1\right) \left(x + 2\right)^{2} \)
Expanded
\[\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = 3 x^{2} + 3 x - 6\]
Factored
\[\left(x - 1\right) {\left( x + 2 \right)}^{2} - {\left( x - 1 \right)}^{2} \left(x + 2\right) = 3 \left(x - 1\right) \left(x + 2\right)\]