If f(x)= 1 − 7x, g(x)= 2x^2 − 6 and h(x)= 3x − 1 / 4x − 9 find:

2. gf(1)

asked by guest
on Nov 19, 2024 at 7:50 pm



You asked:

Given \( f\left( x \right) = 1 - 7 x \), \( g\left( x \right) = 2 \cdot {x}^{2} - 6 \), \( h\left( x \right) = 3 x - \frac{1}{4 x} - 9 \), evaluate \( 2 \), \( g \cdot f\left( 1 \right) \).

MathBot Answer:

$$\begin{aligned}g \cdot f\left( 1 \right)&=- 6 g\end{aligned}$$


\(2\) is a constant and does not depend on the given functions.

$$\begin{aligned}g \cdot f\left( 1 \right)&=g \left(1 - 7 \cdot 1\right)\\g \cdot f\left( 1 \right)&=g \left(1 + -7\right)\\g \cdot f\left( 1 \right)&=- 6 g\\\end{aligned}$$