If f(x)= 1 − 7x, g(x)= 2x^2 − 6 and h(x)= 3x − 1 / 4x − 9 find:
2. gf(1)
You asked:
Given \( f\left( x \right) = 1 - 7 x \), \( g\left( x \right) = 2 \cdot {x}^{2} - 6 \), \( h\left( x \right) = 3 x - \frac{1}{4 x} - 9 \), evaluate \( 2 \), \( g \cdot f\left( 1 \right) \).
MathBot Answer:
$$\begin{aligned}g \cdot f\left( 1 \right)&=- 6 g\end{aligned}$$
\(2\) is a constant and does not depend on the given functions.
$$\begin{aligned}g \cdot f\left( 1 \right)&=g \left(1 - 7 \cdot 1\right)\\g \cdot f\left( 1 \right)&=g \left(1 + -7\right)\\g \cdot f\left( 1 \right)&=- 6 g\\\end{aligned}$$