\int_{0}^{10}x\left(10-x\right)\sin\left(\frac{n\pi x}{10}\right)dx

asked by guest
on Nov 16, 2024 at 10:27 pm



You asked:

Evaluate the integral: \(\int_{0}^{10}{x \cdot \left(10 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{10} \right)}dx\)

MathBot Answer:

Evaluated



\(\displaystyle \int_{0}^{10}{x \cdot \left(10 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{10} \right)}dx = \begin{cases} - \frac{1000 \sin{\left(n \pi \right)}}{n^{2} \pi^{2}} - \frac{2000 \cos{\left(n \pi \right)}}{n^{3} \pi^{3}} + \frac{2000}{n^{3} \pi^{3}} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases} \)


Expanded

\[\int_{0}^{10}{x \cdot \left(10 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{10} \right)}dx = \int\limits_{0}^{10} \left(- x^{2} \sin{\left(\frac{n x \pi}{10} \right)}\right)\, dx + \int\limits_{0}^{10} 10 x \sin{\left(\frac{n x \pi}{10} \right)}\, dx\]


Factored

\[\int_{0}^{10}{x \cdot \left(10 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{10} \right)}dx = - \int\limits_{0}^{10} x \left(x - 10\right) \sin{\left(\frac{n x \pi}{10} \right)}\, dx\]