WHAT IS THE NEXT NUMBER 7 11 2 18 -7
MathBot Answer:
$$7,11,2,18,-7,...$$The next term in this recurrent sequence is $a_{6}=\frac{485}{17}$.
The nth term in this sequence is given by the formula:
Recursive Formula: $$a_n=- \frac{44 a_{n-1}}{17} - \frac{31 a_{n-2}}{17} + \frac{735}{17}, \text{where } a_{1}=7 \text{ and } a_{2}=11$$
RECURSIVE FORMULA
Linear Recurrence Relation
[View Steps]
Given a sequence of m terms, the recursive formula is of the form $$a_n=x_0 + x_1 a_{n-1} + ... + x_k a_{n-k}, \text{where } 1 \leq k \leq \left \lfloor \frac{m-1}{2} \right \rfloor$$
Using all the given terms, solve the systems of equations for $x_i$ when $k=1,...,\left \lfloor \frac{m-1}{2} \right \rfloor$. If $x_i$ is not found for any $k$, a recursive formula cannot be found using this method.
When $k=1$: $$a_n=x_0 + x_1 a_{n-1}, n > 1$$ Solve for $x_0$ and $x_1$: $$\begin{aligned} a_2&=x_0 + x_1 a_1 \\ a_3&=x_0 + x_1 a_2 \\ \vdots \\ a_m&=x_0 + x_1 a_{m-1}\end{aligned}$$