(6x³+5x²-10x+3)÷(2x-1)
You asked:
Evaluate the expression: \(\frac{6 \cdot {x}^{3} + 5 \cdot {x}^{2} - 10 x + 3}{2 x - 1}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{6 \cdot {x}^{3} + 5 \cdot {x}^{2} - 10 x + 3}{2 x - 1} = \frac{6 x^{3} + 5 x^{2} - 10 x + 3}{2 x - 1} \)
Expanded
\[\frac{6 \cdot {x}^{3} + 5 \cdot {x}^{2} - 10 x + 3}{2 x - 1} = \frac{6 x^{3}}{2 x - 1} + \frac{5 x^{2}}{2 x - 1} - \frac{10 x}{2 x - 1} + \frac{3}{2 x - 1}\]
Factored
\[\frac{6 \cdot {x}^{3} + 5 \cdot {x}^{2} - 10 x + 3}{2 x - 1} = 3 x^{2} + 4 x - 3\]